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Abstract
Modern technology like Artificial Intelligence (AI) must be used in the agricultural sec-
tor  if sustainable agricultural output is to be achieved. One of the most convenient strat-
egies for resolving current and future issues is data-driven agriculture. For this, disease 
prediction is a major task for precise farming. For predictive analysis and precise agricul-
ture monitoring systems, with the application of AI, Machine Learning (ML) and Deep 
Learning (DL) play vital roles in building a more robust system. In this work, we will 
design a DL-integrated rice disease prediction system to be implemented for precise farm-
ing. Improvisation of the developed model to detect rice plant diseases & pest attacks with 
a high level of precision. In this work, the Progressive Loss-Aware Fine-Tuning Stepwise 
Learning (PLAFTSL) model is proposed for disease detection. For step-wise learning fine-
tuned ResNet50 model is used with the introduction of freezing and unfreezing layers. This 
reduces the training parameters and thus computational complexity. The introduction of 
the step-wise and progressive loss-aware layer will result in fast convergence and improved 
training efficiency during information exchange among layers respectively. Our proposed 
work uses a dataset from two sources. The result analysis is presented with an ablation 
study. Additionally, the baseline model, ResNet50, is used to display the outcomes of the 
ablation. The results demonstrate that the fine-tuned model results in better performance as 
compared to the transfer learning model. The Conditional Generative Adversarial Network 
(cGAN) augmentation is also added to the designed model which will improve detection 
effectiveness and can also manage the imbalance in input data. The model has achieved 
approx. 98% accuracy and outperforms better with comparative state-of-art models.
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1 Introduction

The majority of nations’ economies rely heavily on the agriculture sector. It is considered 
to be an important source of income in developing countries. According to reports pre-
sented by the WHO and Food and Agriculture Organization (FAO) to guarantee nutritious 
and healthy food, macroeconomic stability, and global food safety [1]. Correspondingly, 
"zero hunger" is among UNESCO’s 17th sustainable development goals, which is pro-
jected to be accomplished by 2030 [2]. The consumption of food increases in proportion to 
the world’s population. Prioritizing agricultural yields is required to deal with the issues. 
diseases, plants, animals, and bugs, combined contribute approximately between 20 and 
40 percent of crop productivity losses and a staggering $220 billion loss yearly [3], which 
have a severe influence on agricultural yield quality and quantity worldwide. About 13% of 
crop productivity loss is responsible for plant diseases [3], which are considered the most 
contributing factor. However, firstly, it is required to comprehend the causes and influenc-
ing aspects of plant disease [4]. These factors are such as host, environment, and patho-
gens. In many diseases, the symptoms mainly appear from the bottom of the plant and 
affect to leaves. Therefore, it is needed to inspect and monitor regularly, disease-causing 
factors and prevent their spread [4]. In major regions of the world such as Asia, Africa, and 
America, rice is considered a low-cost and effective nutrient food. Therefore, its production 
is also significantly affected by plant diseases. Some of the examples of rice plant diseases 
are presented in the appendix. Most rice plant diseases appear on a leaf that needs a visual 
inspection to identify and distinguish them.

Approx. 50% of plant diseases are caused due to fungal infection [5]. Therefore, to 
better diagnose these, image processing and computer vision with an addon of ML has 
been used recently. It has been identified that most plant diseases are due to pathogens and 
are responsible for up to 50% of production loss. Therefore, researchers have contributed 
their efforts in image processing and computer vision applications along with ML and DL 
approaches in the field of precise farming or smart agriculture applications plant disease 
identification is quite necessary [6]. The traditional techniques for detecting plant diseases 
were extremely time-intensive and expensive. They also need the supervision of respec-
tive experts that involves manual inspection which contributes to delayed preventative 
measures and biased results that reduce the overall accuracy of the system. To overcome 
these issues, the paper investigates the application of image processing with ML or DL 
approaches using plant images [7].

Timely illness diagnosis can aid in the reduction of the usage of hazardous chemicals. 
Numerous computer vision or picture processing-based systems for illness detection and 
diagnosis have been created throughout the years. The use of cutting-edge AI approaches 
has also been recommended for disease diagnosis automated processes. The majority of 
these approaches rely on vision-based approaches such as image processing (IP), ML, and 
DL. High-performance AI techniques for detecting plant diseases have been constructed 
utilizing DL techniques in the past few years [10, 11].

Numerous ML and sophisticated DL techniques have been used in the past to identify 
plant diseases. Several research [12–14] in the realm of detecting plant diseases addresses 
this issue by employing step-by-step image processing approaches including picture captur-
ing, picture pre-processing, picture segmentation, retrieval of features, and classification. 
The majority of these algorithms made use of hand-crafted characteristics and traditional 
approaches to ML. For example, K-Means clustering [15] can retrieve color information 
from plant images to detect disease. This color-based information is further classified using 
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ML algorithms such as SVM [16]. When contrasted to modern DL systems, traditional 
methods frequently need considerable picture pre-processing. Picture scaling, denoising 
with a Gaussian or other smoothing filter, and others are examples of pre-processing. These 
pre-processing processes add time to the identification of disease workflow. Traditional 
approaches remain useful when the information is limited and the characteristics are well-
defined. However, this approach results in the issue of information accessibility. Whereas, 
convolution neural networks emerged as better as they can better discriminate image char-
acteristics. CNN can retrieve and process higher-level data such as texture, shape, size, etc. 
The emergence of CNN models [10–14] has improved the performance of the DL approach 
for better prediction of plant diseases.

1.1  Research gaps and motivation

Even though several approaches have been proposed for detecting plant diseases, notably 
rice plant diseases, there are still some major challenges to be overcome. Some of them are 
listed below:

• Using conventional image processing methods to discover and extract relevant informa-
tion from plant leaves (such as rice plants) to distinguish the traits of various diseases 
is rather difficult. There occurs variation in these features, thus it is necessary to thor-
oughly investigate their patterns using a variety of datasets.

• The nature of the manually chosen handcrafted features is the only factor that influ-
ences how well the ML-oriented algorithms operate. Therefore, feature extraction has 
to be automated to choose and learn the best collection of features for classifying 
purposes.

• In DL models, equal weightage is assigned to all features extracted at each level of the 
model. To enhance classification efficiency, feature weightage needs to be updated at 
each level. This leads to a significant learning process.

• In most of the works, transfer learning is used such as VGG16, ResNet50, GoogleNet, 
etc. These DL models need millions of learning parameters that will increase the com-
putational complexity for real-time deployment.

• To achieve higher feature generalization, DL networks must be trained on large data 
samples.

1.2  Key contribution and paper organization

Major of the research contribution is focused on plant disease detection. However, very 
few research contributions are presented for specific plant and their type categorization. In 
this paper, the main focus is to detect and identify the type of rice plant disease to integrate 
with precise farming. Therefore, the novel and main contributions of the paper are such:

• In this paper, a stepwise fine-tuning learning model is proposed with a loss exchange 
block for rice disease classification. This step-wise fine-tuning learning will exchange 
the information about the area of interest and a specific progressive loss aware (PLA) 
block will exchange the loss information with the next layer which will result in better 
convergence of loss. The base model is ResNet50 but it is finetuned with PLA block.

• Before training data augmentation is applied with the cGAN algorithm which will 
result in a more robust and accurate system.
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• The PLAFTSL integrated with cGAN data augmentation models will enhance effi-
ciency and can also handle the imbalance in input data.

• The PLAFTSL model shows results with and without cGAN augmentation. Along with 
that ablation, results are also shown with baseline models i.e., scratch learning, transfer 
learning, and fine-tuned learning.

• The result analysis is also presented under environmental complexities such as noise, 
blur, and camera rotation.

The rest of the paper is divided into four sections. Section 2 presented a discussion of 
the material and methods used to design the proposed model. The experimental setup and 
ablation study are presented in Section 3 of the paper. Section 4 describes the result analy-
sis of comparative state-of-art models. Section 5 gives the discussion on the future scope 
with a conclusion.

2  Related work

The DL models are classified based on learning i.e., learning from scratch, learning from 
pre-trained models, and learning from the fine-tuned model. Some of the major contribu-
tions of scratch learning, transfer learning, and fine-tuned learning are presented in Table 1.

Berwal et al. [11] suggested a disease detection of tomatoes using the CNN model from 
scratch. The model is designed to classify 10 classes of diseases. The method has an accu-
racy of 90.0%. However, the model fails with data augmentation such as cropping. The 
model also degrades the quality of segmentation. Karthiks et al. [12] proposed a residual 
Convolution NN (R-CNN) model. The model was classified into four classes of tomato and 
cross-validation was also performed. Singh et  al. [13] also proposed a multi-layer CNN 
model with scratch learning for the classification of mango leaf diseases. Similarly, Sam-
basivam and Opiyo [14] presented a CNN model for Cassava disease detection with an 
imbalanced dataset collected from Kaggle. Data augmentation was applied to handle data 
imbalance issues. However, the model was not efficient with low-resolution images. Gar-
cia and Barbedo [10] designed a plant disease detection model using transfer learning. In 
this framework, the author used a pre-trained model i.e., GoogleNet for the prediction of 
plant disease level of infection. The model classified the disease severity into 4 classes. The 
model achieved an overall 94% accuracy. The benefit of using this model was that more 
samples of data would result in a better learning process for DL models. More homogene-
ous characteristics were obtained due to background removal before the learning process 
and it will result in a better detection rate. But still, it has some limitations such as the com-
putational complexity of the model being quite high due to high dimensional data samples. 
Another issue with this model was that this model was unable to predict the categories of 
individual diseases. Chen et  al. [19] used a MobileNetV2 framework which uses a pre-
training technique integrated with a Classifier activation map (CAM) for the improvement 
of position visualization. But in this approach, twice training was performed increasing its 
computational complexities. The mobileNet-V2 pre-trained model was introduced with an 
attention mechanism by Chen et al. [23]. VGG-16 and GoogleNet pre-trained models were 
investigated by Yakkundimath et al. [25]. Ahmad et al. [17] proposed a fine-tuned model, 
MobileNet_V3 for plant disease detection. The model achieved good accuracy but resulted 
in quite high trainable parameters that needed to be focused on for a reduction in complex-
ity. Jiang et al. [18] fine-tuned the VGG-Inception model to improve detection accuracy. 
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But the model was object-oriented i.e., specific for apple disease detection. Narasimha 
et  al. [22] fine-tuned the pre-trained model, InceptionResNetV2. The hyper-parameters 
were optimized to achieve better accuracy. Rahman et  al. [26] performed a comparative 
analysis of transfer learning and fine-tuned learning models such as MobileNetv2, VGG16, 
InceptionV3, SqueezeNet, etc. It was observed that fine-tuned VGG16 outperforms better 
accuracy as compared to transfer learning. Singh et al. [27] introduced the fine-tuning of 
the CNN model with the replacement of a softmax classifier with an SVM and a random 
forest classification technique to enhance performance. This was done to reduce the train-
able parameters. Therefore, optimization and reduction of the trainable parameter are also 
scopes for research. Aggarwal et al. [33] proposed a DL-based rice leaf disease classifica-
tion model based on the EfficientNet model. Haridasan et  al. [34] proposed a DL-based 
rice plant disease detection model and achieved 91% accuracy. According to these DL 
applications, it has been analyzed that learning from scratch requires more computational 
resources and increases the training time. Therefore, these are not suitable for deploying 
precise farming over cutting-edge technologies such as IoT, cloud, etc. It has been seen that 
transfer learning models give a good recognition rate and are more compatible with precise 
farming. But limitations of these pre-trained models are that they require high trainable 
parameters. Another issue created in transfer learning is negative learning. To overcome 
these issues, fine-tuned models are introduced that are more memory efficient and enable 
rapid development of precise or smart farming by reducing the training times and com-
plexities. Another major issue created during the learning process is data imbalance issues, 
these issues can be handled by simply introducing feature engineering tools. Therefore, 
in this paper, we have presented a rice disease detection model for precise farming. The 
designed stepwise fine-tuned model interleaved with loss-aware blocks that can help in fast 
learning convergence with reduced complexities.

3  Materials and methods

In this paper, image processing tools and techniques are used to handle issues created in 
rice plant disease classification for precise farming. The methodologies suggested may be 
used for numerous industrial situations where efficient development of ML techniques is 
desired. Given that there is sufficient data for training, advanced CNN has previously done 
well on similar tasks. However, obtaining a large number of images for a given rice disease 
cannot always be feasible. Using data augmentation approaches might help CNNs under-
stand the representative features of the various disease classes, we can overcome the prob-
lems of data shortage and class imbalance. Additionally, the data gathered in the field may 
have a variety of errors including background complexities and occlusion that lead to mis-
classifications. Additionally, because of their greater computational costs, high computa-
tional complexities, and complex architecture, large trainable parameters traditional CNNs 
are not suitable to support precise farming that is operated on cutting-edge technologies 
with limited resources.

3.1  Dataset description

The dataset was obtained from the two sources given in [26, 27, 32]. The first dataset 
was obtained from paddy fields maintained by the Bangladesh Rice Research Institute 
(BRRI) and includes 1426 images of rice diseases [26]. The next dataset was obtained 
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from Kaggle (https:// www. kaggle. com/ datas ets/ minhh uy2810/ rice- disea ses- image- datas 
et/ code.) and includes images of rice diseases. To collect as many images that were as rel-
evant as was feasible, the image collection was done in a range of situations, including the 
winter season, summer season, and humid or rainy weather. The identities of the classes, 
together with the number of images collected for every classifier. Examples of rice dis-
eases are presented in the appendix. Pests and diseases can be found in various sections 
of the rice plant. Temperature, humidity, rain, the species of rice plants, the season, nutri-
ents, and other factors all have an impact on their occurrence. This research work has a 
total of twelve classifiers. The total number of images collected for each disease class is 
presented in the appendix.

3.2  Model overview

In this paper, we have presented a three-layered model, as presented in Fig. 1, for rice dis-
ease detection to support precise farming using the augmentation technique. Their layers 
are described below in sub-sections.

3.2.1  Pre‑processing

The input rice disease images are resized in size 224 × 224 × 3. Each image in each disease 
type contains different samples. Then z-normalization is performed over all input image 
data. Normalized images are combined and divided into training and testing sets in the 
ratio of 70:30. To avoid overfitting of combined data during the learning process augmen-
tation is performed over them.

3.2.2  Data augmentation

cGAN can be employed as a data augmentation method to improve the size of the dataset 
to save the system from overfitting. GAN uses conventional CNN layers to create an image 

Fig. 1  System Architecture

https://www.kaggle.com/datasets/minhhuy2810/rice-diseases-image-dataset/code
https://www.kaggle.com/datasets/minhhuy2810/rice-diseases-image-dataset/code
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matrix from noise. A Discriminator Model (DM) and a Generator Model (GM) constitute 
a Generative Adversarial Network. The objective of the generator is to create fake images, 
and the task of the DM is to determine which images are fake and which are real. The train-
ing of both the models is continuous and concurrent and they try to overcome one another. 
The DM ensures that the images produced by the GM are as similar as possible to the real 
ones. As discussed above this model has two adversarial models i.e. Discriminator and 
Generator. In which the first DM has eight layers along with four Conv2D. The first one 
is the Input Layer with [128 × 128 × 3], Second is the Embedded layer with [0, 3, 25] filter 
size followed by the Dense layer having a sigmoid function. The next layers are reshaped 
and concatenated layers having [64 × 64 × 3] filter size. Then this layer is followed by four 
CNN layers. In which every CNN layer ([32 × 32], [16 × 16], [8 × 8], [4 × 4]) is followed 
by the sixth layer i.e. Leaky ReLU, after the last sixth layer two layers flatten and dropout 
layer.

Similarly, the second model is the GM which has six layers with four convolutional 
layers. The first one is the input layer with [4 × 4 × 3] filter size followed by a dense layer 
having sigmoid activation. The third layer is the Embedded layer followed by four convo-
lutional layers. Each layer has Leaky RELU an activation function with Reshape layer and 
Concatenate layer. cGAN uses generators which generate fake images which are compared 
by the discriminator.

Here, data, d with respective label l are used as discriminative input function with gen-
erator distribution of Igen [28]. The GAN architecture is embedded with a discriminator 
layer to improvise the respective label assigning probability with a GM that generates the 
fake or synthetic images, f, as logarithmic function, log D(d|l) . Concerning the discrimina-
tor, the generator reduces the image dissimilarity loss using the logarithmic func-
tion,  log(1 − log D(G(f |l))) . The objective function adopted in this case is the min–max 
function. In the suggested method, we created synthetic images of various diseases on rice 
plants using cGAN. We initially trained the cGAN model on rice plant images before using 
it to create synthetic images. Let’s take the rice plant disease data-
set LL = {(d(n), l(n))}

N

n = 1
 , where d(n) stands for a specific image and l(n) for its related 

label l(n) ∈ {0, 1, …, 9}. For cGAN training, the discriminator model gets a real rice plant 
image l(n) and associated label l(n), while the GM also receives a noise input and label 
l(n). The GM then creates a false rice plant image. The discriminator model additionally 
receives the fake image that is currently being created. Fake or augmented images are com-
pared with real images by discriminators. In this manner, the rice plant images were used 
to train the cGAN, and augmentation was applied over it. The fake or synthetic images are 
termed augmented images and can be used for further training models for disease diagno-
sis. Therefore, the primary reason for using cGANs for data augmentation in the paper is 
their ability to generate high-quality, targeted synthetic data. cGANs can produce specific 
and diverse samples by conditioning the generation process on certain inputs, such as class 
labels.

3.2.3  Progressive loss‑aware fine‑tuned stepwise learning (PLAFTSL)

In this paper, a progressive loss-aware stepwise fine-tuned learning model interleaved with 
a loss-aware stepping block is presented. Below in Fig. 2, the proposed model architecture 
is presented.

As illustrated in Fig. 2, step-wise learning of a fine-tuned model is presented in which 
some layers gradually freezeout with the convergence of the learning rate. The entire, 
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progressive loss aware fine-tuned stepwise fine-tuned learning (PLAFTSL) is divided 
into three steps. At each step, the model is trained and some pre-trained layers are frozen. 
In step 1, all layers of the pre-trained ResNet50 model are frozen and the last layer is left 
unfreeze. In the last layer, a fine-tuned dense layer is added as illustrated in Fig. 2. Then 
these layers are trained and then information is exchanged to the next step. The loss func-
tion is calculated at this step and its weight is passed to the PLA block. In step 2, some 
more layers are also unfrozen, and fine-tuning is again performed with this step, and the 
model is retrained and further information is also exchanged to the next step, and loss 
information is also shared with the PLA block. And finally, in step 3 some more layers 
are also unfreeze and fine-tuned layers are also added and the model is retrained again. 
And finally, the classifier is added to this layer that classifies the features to the respec-
tive class of disease. In PLAFTSL, the basic idea of freezeout layers was adopted from 
[31]. Training with frozen layers away from the classifier layers rather than initiating 
with all the layers set to trainable as in Freezeout [31]. Another point of distinction is 
that Freezeout focuses on faster training, while the proposed work seeks to identify the 
best strategy for exchanging information stepwise. Therefore, the network is progressive 
due to the presence of the PLA block. Stepwise transfer learning results in faster con-
vergence and thus results in lower training time. By adding up the trainable parameters 
at all training steps and dividing them by the total number of steps, the accumulative 
trainable parameters can be calculated. However, stepwise fine-tuned learning will carry 
forward the pre-trained weights through freeze layers and only retraining is performed 
over unfreeze layers.

Therefore, concisely, it can be concluded that the PLAFTSL model presents the hierar-
chical, stepwise approach to fine-tuning a pre-trained deep neural network. It incorporates 
a Progressive Loss-Aware (PLA) mechanism that intelligently manages the training pro-
cess across different layers of the network. The fine-tuning process of PLAFTSL is divided 
into three main steps, each with a specific focus on the layers being fine-tuned and the 
strategy for freezing and unfreezing layers:

Fig. 2  The architecture of PLAFTSL Model
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Initialization Step:

• Freeze all layers of the ResNet50 model except the last layer.
• Add a dense layer to the last unfrozen layer for fine-tuning.
• Train these layers and calculate the loss, which is then communicated to the PLA 

block.

Intermediate Step:

• Unfreeze additional layers based on the PLA strategy.
• Perform further fine-tuning and training, with loss information exchanged with the PLA 

block.

Final Step:

• Unfreeze additional layers, incorporating fine-tuned layers as needed.
• Retrain the model, culminating in the addition of a classifier layer for disease classification.

The loss function employed in PLAFTSL is presented in Eq.  (1) that is designed to 
address class imbalance and is applied progressively across the fine-tuning steps:

where, j = Number of loss functions, i = Number of layers in the model and FCij = Focal 
loss.

The Eq.  (1) presents the progressive nature of the learning process, emphasizing the 
importance of managing loss at each step to mitigate the effects of class imbalance and to 
enhance the model’s learning efficiency.

The pre-trained ResNet50 [29] is used for the fine-tuning model used for progressive 
stepwise learning. A Residual Neural Network (ResNet) is a type of ANN that builds net-
works by stacking residual blocks on top of one another and. ResNet is an abbreviation for 
Residual Network [29]. The Resnet 50 architecture includes a convolution with a kernel 
size of 7 × 7 and 64 distinct kernels, each with a stride size of 2, yielding one layer. Max 
pooling is next, with a stride size of 2. There is a 1 × 1,64 kernel in the next convolution, 
followed by a 3 × 3,64 kernel, and finally a 1 × 1,256 kernel. These three layers are repeated 
three times in total, giving us nine layers in this phase. After that, we observe a kernel of 
1 × 1, 128 followed by a kernel of 3 × 3,128 and finally a kernel of 1 × 1,512. This phase 
was done four times, giving us a total of 12 layers. Then there’s a 1 × 1,256 kernel, fol-
lowed by 3 × 3, 256, and 1 × 1, 1024 kernels, which are repeated six times for a total of 18 
layers. Then a 1 × 1,512 kernel was added, followed by two additional 3 × 3, 512, and 1 × 1, 
2048 kernels, for a total of nine layers. Afterward when, we conduct an average pool and 
finish with a fully linked layer with 1000 nodes, followed by a softmax function, giving us 
one layer.

The output of ResNet-50’s last convolution block is cascaded with layers of denseconv that 
include batch normalization with parametric ReLU [30] activation. For the classification of 
the data used, the network was retrained, and features were taken from the suggested fine-
tuned framework and then further flattened. Using a progressive layer-wise loss function and 
parametric ReLU activation layer, fine-tuning was carried out. This loss function is developed 

(1)LossStep =
1

N

I∑

i=1

J∑

j=1

FCij
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to address the issue of class imbalance. Parametric ReLU is used for fine-tuning models since 
it does not have a vanishing gradient problem and allows for fine-tuning of the learning param-
eters on the learning rate. The loss function is described below:

3.3  Training details

The PLAFTSL network is designed for rice disease detection for multiple disease classifica-
tion to support precise farming. The input image size is 224 × 224 which is used to train the 
model. In this paper, images collected from different sources [26, 27, 32] are used for training 
and purposes. For residual learning, the loss function is used to train the model, termed FCloss . 
The minimum batch size of the training module was 64. Adam optimizer for training the mod-
els with a learning rate of  10–4. The training is done for the 100 epochs. The designed frame-
work is implemented in Python using Google Colab. The implementation is done in Keras, 
using TensorFlow as the backend. All networks are trained on the Tesla P100-PCIE GPU. To 
handle training overfitting, cGAN data augmentation is employed. Below in Table 2, learning 
hyper-parameters are presented.

4  Results and discussions

The validation of simulation experiments for the suggested model is presented in this section. 
This section offers a summary of the ablation study findings that focus on the performance of 
the suggested work. The advantages of each module employed in the proposed approach are 
demonstrated using the ablation study. As a result, we evaluated and compared the suggested 
PLAFTSL with and without augmentation in this section. Furthermore, baseline models are 
contrasted with the suggested PLAFTSL. Below in Eq. (1) to Eq. (5), performance parameters 
are discussed:

(2)Accuracy =
TrP + TrN

TrP + TrN + FlP + FlN

(3)Precision =
TrP

TrP + FlP

(4)Recall =
TrP

TrP + FlN

Table 2  Learning 
Hyperparameters

Parameters Values

Input images 224 × 224
Batch size 64
Learning rate 10–4

Epoch 100
Activation Parametric ReLU
Environmental Conditions for Testing Noise, blur, camera rotation
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where, TrP, FlP, TrN, FlN are True Positive, False Positive, True Negative, False Negative 
respectively.

4.1  Comparison of baseline models

In this sub-section, we have presented the result analysis of baseline models without 
the cGAN augmentation module. The testing results are compared in terms of accuracy, 
precision, recall, and f1_score. Three baseline models i.e., scratch model, transfer learn-
ing, and fined-tuned learning model are discussed here.

Baseline Model 1: The CNN residual learning is used from scratch initially having 
the combination of Convolution layer, batch normalization, and ReLU activation func-
tion. The loss function adopted for the baseline model is categorical cross entropy only 
at the final layer of the model.

Baseline Model 2: In this model, a pre-trained transfer learning model, such as the 
ResNet50 model is used. The loss function adopted for baseline model 2 is also cat-
egorical cross-entropy.

Baseline Model 3: In this model, fine-tuning of ResNet50 is performed. The output 
of ResNet-50’s last convolution block is cascaded with layers of denseconv that include 
batch normalization with parametric ReLU activation function.

The results of these 3 baseline models are presented in Table 3. For the scratch CNN 
model, Accuracy is 85.7%, Precision is 87%, Recall is 86% and F-1 Score is 85%. For 
the Transfer learning model accuracy is 91.4%, precision is 93%, recall is 91% and F-1 
Score is 92%. Similarly for the Fine-tuned model, these performance parameter is evalu-
ated and it has a maximum percentage in terms of all the parameters. The fine-tuned 
model achieved an accuracy of 98.3%, 98% precision 97% recall, and 98% of F1_Score. 
The trainable parameters for three of the models are 9, 24, and 1.2 million respectively. 
From the table, it is concluded that the fine-tuned model achieved better accuracy with 
lower trainable parameters. Figure 3 shows the training accuracy and training loss for 
the different baseline models i.e. scratch model transfer learning and fined-tuned learn-
ing model. It is clear from the graph that the fine-tuned learning model has better accu-
racy than the remaining two models the fine-tuned learning accuracy is 98%. Similarly, 
all the model loss is also evaluated. From the graph, it is clear that in comparison with 
these three baseline models transfer learning model has the maximum loss while the 
fine-tuned learning model has the minimum loss.

(5)F1Score =
2 ∗ precision ∗ Recall

precision + Recall

Table 3  Ablation Study on Learning Models

Models Accuracy Precision Recall F1_score Trainable Parameters

Scratch CNN 0.857 0.87 0.86 0.85 9 Million
Transfer Learning 0.914 0.93 0.91 0.92 24 Million
Fine-tuned Learning 0.983 0.98 0.97 0.98 1.2 Million
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4.2  Comparison with augmentation

In this sub-section, we have presented the result analysis of baseline models with and with-
out a cGAN augmentation module with a fine-tuned baseline model. The testing results are 
compared in terms of accuracy, precision, recall, and f1_score. Table 4 shows the model 
performance evaluation with and without augmentation for the designed model. With-
out augmentation, accuracy is 97.9%. The results are improved with augmentation for all 
parameters. With augmentation, accuracy is 98.4% (Table 5).

The training accuracy and training loss with and without augmentation are presented 
in Fig. 4. It is clear from the graph that with cGAN augmentation the system has better 
accuracy than without Augmentation. The accuracy is between 98 to 95% without cGAN 
and this is due to the presence of unequal count of different diseases as the dataset is 

(a) Accuracy

(b) Loss

Fig. 3  Training Accuracy and Training Loss for Baseline Models
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collectively prepared from different sources. Therefore, after augmentation, it is showing 
a smooth trendline for the learning process. Accuracy is 98.5% with cGAN augmentation. 
Similarly, for all loss functions, as presented in Fig. 4b, the model has almost constant loss 
and is also lowest with cGAN augmentation.

4.3  Result analysis and comparative state‑of‑art

The network performance of the proposed PLAFTSL model is presented in this section. 
Rice image datasets are used for testing the network performances. Below in Fig. 5a, the 
training and validation graph of the model is presented. Similarly, in Fig. 5b, the training 
and validation loss graph of the designed PLAFTSL model is presented. From the graph, 
it is observed that the PLAFTSL model has achieved approx. 98% of accuracy. The loss 
graph shows better convergence towards minimum loss due to the presence of a PLA block 
in the model. In Fig. 6a and b, we have presented the ROC curve and confusion matrix 
respectively for illustration of classification performance. The confusion matrix for the rice 
disease classification model across 12 classes shows that the model generally performs 
well, with a strong diagonal indicating correct classifications. However, some misclassifi-
cations are evident, as seen in the off-diagonal cells where the model confused one disease 
for another. However the high numbers on the matrix’s diagonal suggest a relatively robust 
performance in disease identification. In Table 6, we have shown the result of testing sam-
ples in terms of accuracy, precision, recall, and f1_score. The results show that the model 
has achieved approx. 98% of accuracy. Figure 7 shows the feature visualization sample of 
the testing image by PLAFTSL model.

Table 4  Performance of Model 
with and Without Augmentation

Models With cGAN Without cGAN

Accuracy 0.984 0.979
Precision 0.98.5 0.98
Recall 0.98 0.98
F1_score 0.98 0.98

Table 5  Classification 
Performance with Disease Type

Disease Accuracy Precision Recall F1-score

BLB 98.30% 84.00% 91.00% 87.00%
BPH 95.00% 87.00% 91.00%
Brown_Spot 99.00% 99.00% 99.00%
False_Smut 88.00% 88.00% 88.00%
Healthy 92.00% 99.00% 95.00%
Hispa 91.00% 68.00% 78.00%
Neck_Blast 98.00% 100.00% 99.00%
Sheath_Blight_Rot 94.00% 91.00% 93.00%
Stemborer 99.00% 94.00% 96.00%
Tungro 100.00% 100.00% 100.00%
Blast 100.00% 99.00% 99.00%
Bacterialblight 98.00% 100.00% 99.00%
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The classification performance of PLAFTSL on different disease types is presented in 
Table 5. The table presents an average accuracy of 98.30%. Figure 8 presents the testing 
outcome of some images by PLAFTSL. Table  6 presents the result analysis for disease 
detection under different environmental conditions. The result shows that the tested models 
exhibit the highest resilience to noise and are least effective in handling camera motion. 
Overall, these results underline the models’ strengths and weaknesses in dealing with vari-
ous environmental disturbances, highlighting particular robustness to noise and a need for 
improvement in handling camera motion.

Further, comparative state-of-art is also presented with some existing models i.e., 
MDFF [24], FT-VGG16 [26], and DL-RF [27]. MDFF [24] designed a hybrid CNN 
fusion model and achieved good efficiency but suffered from an overfitting problem 

(a) Accuracy

(b) Loss

Fig. 4  Training Accuracy and Training Loss with and Without Augmentation
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during the training phase. FT-VGG16 [26] was a fine-tuned VGG16 model for rice dis-
ease detection. The model achieved an accuracy of about 97% but the dataset is con-
sidered very small, and images of different rice diseases look very similar, deep neural 
networks cannot be trained from scratch since the data is very small, and shallow feature 
extraction is produced around 80%. The trainable parameter was approximately 138 mil-
lion. This results in the high computational cost of the model. In [27], the DL model 
was modified by changing the classifier layer of the model. Plant Village Dataset was 
used in this work and scratch learning was adopted. In this hybrid model, the voting 
strategy was used from five different models such as LeNet, AlexNet, MobileNet, Shuf-
fleNet, and EffNet. The combination of these five models requires 56 million trainable 
parameters which makes its computational complexity very high. In [22], the Inception 

(a) Accuracy

(b) Loss

Fig. 5  Training and Validation Performance of PLAFTSL
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CNN model was proposed and this model achieved approx. 95% of testing accuracy but 
the limitation of this model was that this model was designed for four types of rice plant 
diseases only taken from [22]. Whereas the computational complexity of this model was 
quite high.

(a) ROC

(b) Confusion Matrix

Fig. 6  Training and Validation Performance of PLAFTSL
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Table 7 shows the model performance evaluation for different benchmark techniques. 
For MDFF [24], accuracy is 95.31%, precision is 94%, recall is 96% and F1_score is 
95%. For FT-VGG16 [26], accuracy is evaluated which is 97.12%. Similarly for DL-RF 
[27] model, accuracy is 96.1%, precision is 95.9%, recall is 88.6% and f1_score is 92.1%. 
For our proposed work, all these four performance parameters are evaluated and it has a 

Table 6  Testing Performance 
Under Environmental Conditions

Models Noise Camera Motion Blur

Accuracy 97 92 96
Precision 94 89 95
Recall 92 88 89
F1_score 93 88 92

Fig. 7  Feature Visualization in PLAFTSL

Fig. 8  Testing Outcome Visualization of PLAFTSL
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maximum percentage in terms of all the parameters. The proposed model has achieved 
the highest accuracy of 98% of all. The results are maximum improved by 2.69% for accu-
racy, 5% for precision, 3% for recall, and 4% for f1_score. Therefore the PLAFTSL mod-
el’s combination of high performance and low parameter count suggests a highly efficient 
model architecture that is easier to train and deploy, making it particularly appealing for 
real-world applications where computational resources might be limited. This analysis 
reveals that while high accuracy is crucial, it’s equally important to consider the balance of 
precision and recall, the efficiency of the model (in terms of trainable parameters), and how 
these factors align with the specific needs and constraints of real-world applications. The 
PLAFTSL model, with its high accuracy, efficiency, and balanced performance, appears to 
be a strong candidate for practical deployment in detecting rice diseases, assuming its per-
formance is consistent across diverse and unseen data.

5  Limitations of work

In this paper, the PLAFTSL model is presented for rice disease classification and achieved 
good accuracy. However this work can have the following limitations.

• As a large number of images are processed while training, therefore feature reduction 
needs to be applied.

• Another limitation of PLAFTSL is that with increasing environmental complexity, its 
efficiency is decreasing which needs to be focused on in the future.

6  Conclusions

In addressing the critical challenge of mitigating the adverse effects of rice diseases on 
crop yields, this study emphasizes the necessity of effective disease prevention and man-
agement strategies in rice agriculture. The basis of such strategies is the timely and accu-
rate diagnosis of diseases, which facilitates the immediate deployment of targeted pesticide 
treatments. Traditional approaches to rice disease diagnosis have predominantly relied on 
manual observation of disease symptoms or the application of computer vision, alongside 
machine learning (ML) and deep learning (DL) techniques. Innovatively advancing the 
field, the authors of this paper propose a novel loss-aware stepwise learning approach spe-
cifically designed for the accurate diagnosis of rice diseases. This approach is anchored 
by an enhanced version of the ResNet50 model, which has been meticulously fine-tuned 

Table 7  Comparative State-of-art Performance

Models Accuracy Precision Recall F1_score Trainable Parameters

TL [22] 95.64% 96.5% 96.5% 96.5% 64 million
MDFF [24] 95.31% 94% 96% 95% -
FT-VGG16 [26] 97.12% - - - 138 million
DL-RF [27] 96.1% 95.9% 88.6% 92.1% 56 million
PLAFTSL 98.32% 98% 96% 97% 1.2 million
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through a strategic process of layer freezing and unfreezing. This methodological refine-
ment significantly streamlines the computational process and reduces the number of 
parameters requiring training, thereby optimizing the system’s efficiency. The efficacy and 
reliability of the proposed approach are rigorously validated through extensive testing and 
training on a dataset collected from a variety of sources, demonstrating its superior capa-
bility in the accurate detection of rice diseases. Furthermore, the study comprehensively 
assesses the model’s performance under diverse environmental conditions, underscoring 
its robustness and applicability in real-world scenarios. In the future, the designed model 
will be extended to real-time capturing of data and also find the factors that cause different 
types of rice diseases.

Appendix

Fig. 9  Collected Rice Plant Disease Samples [26, 27, 32]

  Figure 9
Tables 8 and 9
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Table 8  Plant Disease Types and their Symptoms [8, 9]

Disease Occurrence Symptoms Spread

Rice Blast Pathogens Diamond shaped lesions Leaves, Collars, Seeds
Bacterial Blight Pathogens Small yellow or brown spots Leaves
Brown Spots Pathogens Brown lesion Leaves
False Smut Pathogens Chalkiness of grains  

(velvety smut ball)
Grains or seeds

Node Blast or Neck 
blast

Pathogens Blackish blast spores Ground part (leaf, collar, node, neck)

Stemborer Insects Tiny holes in tiller or  
stem

Stems

Hispa Insects Whitish leaves, Irregular 
white patches parallel  
to a mid vein in leaves

Leaves

Leaf Blast Pathogens White or gray lesion  
spots

Ground part (leaf, collar, node, neck)

Sheath Blight Pathogens Oval-shaped gray or  
green spots

Upper part (leaves)

Table 9  Dataset Description [26, 
27, 32]

S.No Class Name No. of images

1 Brown Spot 634
2 Hispa 638
3 Leaf Blast 779
4 Healthy 1722
5 False Smut 93
6 BPH 71
7 BLB 138
8 Neck Blast 286
9 Stemborer 201
10 Sheath Blight and/or Sheath Rot 219
11 Tungro 1308
12 Bacterialblight 1584

Total 7673
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